技术文章您的位置:网站首页 >技术文章 >超声无损检测中的缺陷识别与噪声抑制

超声无损检测中的缺陷识别与噪声抑制

发布时间:2010-09-13   点击次数:1431次
在传统的小波信号处理器基础上,根据解析小波变换能准确提取信号相位的特性,利用超声检测信号的相位信息,提出一种新的多缺陷识别与噪声抑制算法。该算法充分运用超声信号的时域、频率和相位信息,能检测多个具有不同频谱特性的缺陷。实验结果表明该算法不仅消噪性能好,而且提高了缺陷的纵向分辨率。

超声无损检测中,由于缺陷信号被噪声污染,甚至淹没,直接从背景晶粒噪声中区分缺陷信号十分困难,这样超声信号处理就十分重要。目前已有许多超声信号处理方法,如空域复合法、频率复合法、解卷积、自适应滤波、倒谱分析法、人工神经网络、裂谱分析法等。其中zui有代表性的是裂谱分析法。但是,这些方法中的绝大部分在信号处理时,通常仅用了信号的时域信息或频域信息。笔者在传统的小波信号处理器基础上,利用超声检测信号的相位信息,提出了一种新的多缺陷识别与噪声抑制算法。
1
 小波分析
  对母小波g(t)作平移和伸缩所得到的一函数簇称为子波(基),记为
              (1)
  一个信号s(t)的连续小波变换(CWT)为[1

        (2)
  典型重构

           (3)
  另一种较简单的重构公式是Morlet重构[1

             (4)
  为了获得重构,使用该式重构时需要已知足够多尺度上的CWT系数。

  由于利用解析小波变换能准确提取信号相位[2],笔者所用小波变换为解析小波变换。实验中采用的小波是Morlet小波,其表达式为
g(t)=Ae-t2/4Bejω0t
                (5)
式中,AB为实验常量;ω0为超声探头的中心频率。它们的选择要保证式(5)满足小波的允许条件。

2
 建模
    超声检测中,单缺陷[34
s1(t)=A1δ(t-T1)
              (6)
式中,A1T1分别为缺陷信号的幅值和位置。

  式(6)Fourier变换
s1(f)=A1exp(-j2πfT1)
             (7)
  按照群延时定义

               (8)
  缺陷信号的群延时为一常量

v(f)=T1
                    (9)
  超声检测系统接收到的超声信号

y(t)=s(t) h(t)+n(t)
           (10)
式中,h(t)为系统脉冲响应;n(t)为噪声; 为卷积操作。

  噪声可以看作一随机过程,在频域建模
N(f)=μ(f)exp(jθ(f))
           (11)
式中,μ(f)θ(f)均为随机变量。

  假定h(t)是实的偶函数,根据式(7)、式(10)、式(11),系统接收到的单缺陷信号频域
Y1(t)=A1H(f)exp(-j2πfT1)+μ(f)exp(jθ(f))
         (12)
单缺陷群延时[34

          (13)
  如果在频域中信号局部信噪比很高(即A1H(f)/μ(f) 1),将产生一个常量群延时(T1),反之是一随机群延时。在频域中缺陷信号是常量群延时,噪声信号是随机群延时。

  在小波变换中,从式(13)得出的结论不成立,因为小波变换具有时频局部化特性,相位计算时得到的是某一局部时间和某一尺度(尺度与频率成反比)上的瞬时相位,而对于某一局部时间信号,不管是噪声还是缺陷,在各尺度或频率上的群延时都是常量群延时。
  但是,在缺陷模型式(6)中假定了缺陷回波是一冲激响应,实际上缺陷回波信号是有一定宽度的。设超声探头的发射波为x(t)C(t)为介质中沿传播方向的反射系数函数。经过各种简化,接收到的多缺陷超声信号[5
               (14)
                
(15)
式中,ti为对应缺陷位置;citi处缺陷的反射系数。

  从式(14)、式(15)看出,缺陷回波的宽度
WF=WT
                      (16)
式中,WT为发射波宽度。

  在小波变换域中式(9)变为
vs(ai,bj)=bj
  bj(b1,bn)             (17)
式中,ai为尺度因子;bj为平移因子;b1bn对应缺陷回波的下限td和上限tu

  假设超声信号被等时间间隔采样,缺陷信号群延时差为一常量
vs(a,bj+1)-vs(a,bj)=const
              (18)
式中,j1n。噪声信号群延时差为一随机值

vn(a,bk+1)-vn(a,bk)=random
             (19)
  这个随机性可用群延时差熵来估计。

3
 基于解析小波变换的多缺陷检测算法
3.1
 对接收到的超声信号进行连续小波变换
  Morlet小波的子波形式
            (20)
式中,a=2mb=nTs1

  实验中小波变换时m从-34,步距step0.1,共使用了71个滤波器。
3.2
 计算群延时及群延时差
  在DFT中群延时的离散化定义为[4
         (21)
式中, (k)k频率时的相位;NDFT时的数据总点数。

  在小波变换中可以给出类似定义,令
(a,b)=arg
Ws(a,b)]             (22)
式中, (a,b)是时频平面上(a,b)点的相位。从尺度与频率的关系

a=f0/f
                  (23)
f0=ω0/2π
  利用群延时定义式(8),可导出在时刻bj,尺度ai上群延时为

          (24)
式中,ai=2mi;mi+1=mi+step

  群延时差定义为在尺度ai上,相邻时刻bj的群延时差值,即
dvbj(ai)=vbj+1(ai)-vbj(ai)
             (25)
3.3
 计算群延时差熵

  在尺度ai上,用一宽度为M的移动窗分割群延时差值(假设为N点),窗中心bkbM/2b(N-M)/2滑动。计算每一个窗内的群延时差直方图fbj(m)m1M。然后,将直方图归一化。
  移动窗内的群延时差熵Ik的计算如下:
       (26)
式中,Ibk(ai)为时频平面上点(ai,bk)的熵。

    经过上述计算,在每一尺度ai上可以求出一条群延时差熵曲线。
    在移动窗内如果没有噪声且仅有一个缺陷,群延时差熵
        (27)
  在移动窗内如果仅有噪声,噪声相位在[π]上均匀分布,则群延时差在[1,M]上概率分布密度为一常量,因此群延时差熵

           (28)
3.4
 缺陷信息提取

  从前述可知,缺陷具有小的群延时差熵,而噪声信号则具有大的群延时差熵。给定一个熵阈值Ip,如果Ibk(ai)≤Ip,则认为在时刻bk存在一个缺陷,依次找出所有缺陷。如果找到缺陷bk,则保留以bk为中心,宽度为M的小波变换系数。然后对所有非缺陷时间的小波变换系数置为0。zui后对小波变换系数进行修剪[6]和阈值处理[7]。
3.5
 信号重构
  经过上述处理后,zui后利用重构式(3)或式(4)重构出缺陷信号。
4
 实验结果
  为了验证算法的有效性,我们进行了大量的实验。图1a是一实际工件检测中采集的信号,图1b是图1a加入随机噪声后的波形,图1c是处理后的结果。图2a是一铸铁件的实际检测数据。铸铁材料是一种粗晶材料,晶粒噪声很大,缺陷信号几乎被噪声完全淹没。 2b是经过处理后的结果,缺陷回波被提取出来了,该检测结果与工件的解剖结果十分吻合。

5
 结论
  笔者提出的多缺陷识别与噪声抑制算法,充分运用了超声信号的时域信息、频率信息和相位信息,不受缺陷数量和频谱特性的限制,能检测多个具有不同频谱特性的缺陷。实验结果表明该算法不仅消噪性能好,而且具有高的缺陷定位能力和高的纵向分辨率。
在线咨询
咨询热线

13906129817

[关闭]